Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Sens ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501291

RESUMO

Conductive metal-organic frameworks (MOFs) have received increasing attention in recent years and present high application potential as sensing elements in electronic sensors. In this study, flexible field-effect transistor (FET) sensors based on conductive MOF, i.e., Ni3(HHTP)2, have been constructed. This Ni3(HHTP)2 sensor has high sensitivity (detection limit of 56 ppb) as well as superior selectivity for NO2 detection at room temperature, which is demonstrated by accurate gas detection in a mixed gas atmosphere. Moreover, by employing six flexible substrates, i.e., polyimide (PI), tape (PET), facemask, paper cup, tablecloth, and take-out bag (textile), we successfully demonstrate the universality of the flexible sensor construction with conductive MOF as sensing film on various substrates. This study of conductive MOF-based flexible electronic sensors offers a new opportunity for a wide range of sensing applications with wearable and portable electronic devices.

2.
Dev Comp Immunol ; 156: 105171, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537729

RESUMO

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.

3.
Anal Chem ; 95(49): 18065-18074, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019807

RESUMO

Two-dimensional violet phosphorus (VP) has emerged as a new sensing material in various sensing applications due to its unique electrical properties and high stability among allotropes of phosphorus. Currently, the research of the VP-based analysis method is at the early stage. In this work, a VP nanosheet-based field-effect transistor (FET) sensor is reported for the detection of NO2 and N2O gases with extraordinary sensing performance. This sensor can achieve excellent sensitivity of up to ∼50% current change/ppm and a low detection limit of 5.9 ppb and enables the NO2 analysis in various mixed gases. Moreover, this sensor can effectively distinguish between NO2 and N2O gases, which is a big challenge for current FET or chemiresistor gas sensors. The different sensing behaviors of the VP sensor to NO2 and N2O gases have been investigated, and the mechanism study shows that the adsorption energy, bond length of the gas molecule on the VP surface, and the decomposition of N2O led to the differential responses. This work is one of the pioneer studies of VP gas sensors and presents a new sensing method for the discriminative analysis of NO2 and N2O for greenhouse gas emission monitoring and air quality control.

5.
J Exp Clin Cancer Res ; 42(1): 198, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550764

RESUMO

BACKGROUND: Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS: We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFß1 and AR signaling and mediating inherited PCa risk and progression. RESULTS: In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFß signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFß and AR signaling pathways, and activated the expression of TGFß1 via directly binding to a distal enhancer of TGFß1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS: Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFß1, thereby co-opting to TGFß1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Próstata/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Cromatina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
7.
Nat Commun ; 13(1): 7320, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443337

RESUMO

Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias da Próstata , Masculino , Humanos , Próstata , Neoplasias da Próstata/genética , Pelve , Células Germinativas , Regulador Transcricional ERG/genética , Fator 1-beta Nuclear de Hepatócito/genética , Serina Endopeptidases/genética , Proteínas de Fusão Oncogênica/genética
8.
Cell Discov ; 8(1): 25, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277482

RESUMO

Primary cilia are antenna-like subcellular structures to act as signaling platforms to regulate many cellular processes and embryonic development. m1A RNA modification plays key roles in RNA metabolism and gene expression; however, the physiological function of m1A modification remains largely unknown. Here we find that the m1A demethylase ALKBH3 significantly inhibits ciliogenesis in mammalian cells by its demethylation activity. Mechanistically, ALKBH3 removes m1A sites on mRNA of Aurora A, a master suppressor of ciliogenesis. Depletion of ALKBH3 enhances Aurora A mRNA decay and inhibits its translation. Moreover, alkbh3 morphants exhibit ciliary defects, including curved body, pericardial edema, abnormal otoliths, and dilation in pronephric ducts in zebrafish embryos, which are significantly rescued by wild-type alkbh3, but not by its catalytically inactive mutant. The ciliary defects caused by ALKBH3 depletion in both vertebrate cells and embryos are also significantly reversed by ectopic expression of Aurora A mRNA. Together, our data indicate that ALKBH3-dependent m1A demethylation has a crucial role in the regulation of Aurora A mRNA, which is essential for ciliogenesis and cilia-associated developmental events in vertebrates.

9.
Micromachines (Basel) ; 12(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945288

RESUMO

Optical network-on-chip (ONoC) is based on optical interconnects and optical routers (ORs), which have obvious advantages in bandwidth and power consumption. Transmission capacity is a significant performance in ONoC architecture, which has to be fully considered during the design process. Relying on mode-division multiplexing (MDM) technology, the system capacity of optical interconnection is greatly improved compared to the traditional multiplexing technology. With the explosion in MDM technology, the optical router supporting MDM came into being. In this paper, we design a multimode optical router (MDM-OR) model and analyze its indicators. Above all, we propose a novel multimode switching element and design an N-port universal multimode optical router (MDM-OR) model. Secondly, we analyze the insertion loss model of different optical devices and the crosstalk noise model of N-port MDM-OR. On this basis, a multimode router structure of a single-mode five-port optical router is proposed. At the same time, we analyze the transmission loss, crosstalk noise, signal-to-noise radio (OSNR), and bit error rate (BER) of different input-output pairs by inputting the 1550 nm TE0, TE1, and TE2 modes to the router.

10.
Cell Res ; 31(11): 1199-1211, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480124

RESUMO

Primary cilia extending from mother centrioles are essential for vertebrate development and homeostasis maintenance. Centriolar coiled-coil protein 110 (CP110) has been reported to suppress ciliogenesis initiation by capping the distal ends of mother centrioles. However, the mechanism underlying the specific degradation of mother centriole-capping CP110 to promote cilia initiation remains unknown. Here, we find that autophagy is crucial for CP110 degradation at mother centrioles after serum starvation in MEF cells. We further identify NudC-like protein 2 (NudCL2) as a novel selective autophagy receptor at mother centrioles, which contains an LC3-interacting region (LIR) motif mediating the association of CP110 and the autophagosome marker LC3. Knockout of NudCL2 induces defects in the removal of CP110 from mother centrioles and ciliogenesis, which are rescued by wild-type NudCL2 but not its LIR motif mutant. Knockdown of CP110 significantly attenuates ciliogenesis defects in NudCL2-deficient cells. In addition, NudCL2 morphants exhibit ciliation-related phenotypes in zebrafish, which are reversed by wild-type NudCL2, but not its LIR motif mutant. Importantly, CP110 depletion significantly reverses these ciliary phenotypes in NudCL2 morphants. Taken together, our data suggest that NudCL2 functions as an autophagy receptor mediating the selective degradation of mother centriole-capping CP110 to promote ciliogenesis, which is indispensable for embryo development in vertebrates.


Assuntos
Centríolos , Peixe-Zebra , Animais , Autofagia , Cílios , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mães
11.
Front Cell Dev Biol ; 9: 671233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262899

RESUMO

Filamin A, the first discovered non-muscle actin filament cross-linking protein, plays a crucial role in regulating cell migration that participates in diverse cellular and developmental processes. However, the regulatory mechanism of filamin A stability remains unclear. Here, we find that nuclear distribution gene C (NudC), a cochaperone of heat shock protein 90 (Hsp90), is required to stabilize filamin A in mammalian cells. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudC interacts with filamin A. Overexpression of human NudC-L279P (an evolutionarily conserved mutation in NudC that impairs its chaperone activity) not only decreases the protein level of filamin A but also results in actin disorganization and the suppression of cell migration. Ectopic expression of filamin A is able to reverse these defects induced by the overexpression of NudC-L279P. Furthermore, Hsp90 forms a complex with filamin A. The inhibition of Hsp90 ATPase activity by either geldanamycin or radicicol decreases the protein stability of filamin A. In addition, ectopic expression of Hsp90 efficiently restores NudC-L279P overexpression-induced protein stability and functional defects of filamin A. Taken together, these data suggest NudC L279P mutation destabilizes filamin A by inhibiting the Hsp90 chaperoning pathway and suppresses cell migration.

12.
Cell Death Dis ; 11(7): 534, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665550

RESUMO

Cell migration plays pivotal roles in many biological processes; however, its underlying mechanism remains unclear. Here, we find that NudC-like protein 2 (NudCL2), a cochaperone of heat shock protein 90 (Hsp90), modulates cell migration by stabilizing both myosin-9 and lissencephaly protein 1 (LIS1). Either knockdown or knockout of NudCL2 significantly increases single-cell migration, but has no significant effect on collective cell migration. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudCL2 binds to myosin-9 in mammalian cells. Depletion of NudCL2 not only decreases myosin-9 protein levels, but also results in actin disorganization. Ectopic expression of myosin-9 efficiently reverses defects in actin disorganization and single-cell migration in cells depleted of NudCL2. Interestingly, knockdown of myosin-9 increases both single and collective cell migration. Depletion of LIS1, a NudCL2 client protein, suppresses both single and collective cell migration, which exhibits the opposite effect compared with myosin-9 depletion. Co-depletion of myosin-9 and LIS1 promotes single-cell migration, resembling the phenotype caused by NudCL2 depletion. Furthermore, inhibition of Hsp90 ATPase activity also reduces the Hsp90-interacting protein myosin-9 stability and increases single-cell migration. Forced expression of Hsp90 efficiently reverses myosin-9 protein instability and the defects induced by NudCL2 depletion, but not vice versa. Taken together, these data suggest that NudCL2 plays an important role in the precise regulation of cell migration by stabilizing both myosin-9 and LIS1 via Hsp90 pathway.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Células A549 , Movimento Celular/fisiologia , Humanos , Transfecção
13.
Cell Death Dis ; 10(9): 628, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427565

RESUMO

Centriole duplication is tightly controlled to occur once per cell cycle, and disruption of this synchrony causes centriole amplification, which is frequently observed in many cancers. Our previous work showed that nuclear distribution gene C (NudC)-like protein 2 (NudCL2) localizes to centrosomes; however, little is known about the role of NudCL2 in the regulation of centrosome function. Here, we find that NudCL2 is required for accurate centriole duplication by stabilizing the E3 ligase HECT domain and RCC1-like domain-containing protein 2 (HERC2). Knockout (KO) of NudCL2 using CRISPR/Cas9-based genome editing or depletion of NudCL2 using small interfering RNA causes significant centriole amplification. Overexpression of NudCL2 significantly suppresses hydroxyurea-induced centriole overduplication. Quantitative proteomic analysis reveals that HERC2 is downregulated in NudCL2 KO cells. NudCL2 is shown to interact with and stabilize HERC2. Depletion of HERC2 leads to the similar defects to that in NudCL2-downregulated cells, and ectopic expression of HERC2 effectively rescues the centriole amplification caused by the loss of NudCL2, whereas the defects induced by HERC2 depletion cannot be reversed by exogenous expression of NudCL2. Either loss of NudCL2 or depletion of HERC2 leads to the accumulation of ubiquitin-specific peptidase 33 (USP33), a centrosomal protein that positively regulates centriole duplication. Moreover, knockdown of USP33 reverses centriole amplification in both NudCL2 KO and HERC2-depleted cells. Taken together, our data suggest that NudCL2 plays an important role in maintaining the fidelity of centriole duplication by stabilizing HERC2 to control USP33 protein levels, providing a previously undescribed mechanism restraining centriole amplification.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/metabolismo , Regulação para Baixo , Técnicas de Inativação de Genes , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Transfecção , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases
14.
Mater Sci Eng C Mater Biol Appl ; 96: 661-668, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606579

RESUMO

The trans to cis isomerization of the azobenzene chromophore in most azobenzene-based photoresponsive molecularly imprinted polymers (MIPs) is initiated by UV irradiation. This limits the application of these materials in cases where UV light toxicity is an issue, such as in biological systems, food monitoring, and drug delivery. Herein we report a tetra-ortho-methyl substituted azobenzene, (4-[(4-methacryloyloxy)-2,6-dimethyl phenylazo]-3,5-dimethyl benzenesulfonic acid (MADPADSA). The photoswitching of MADPADSA could be induced by visible-light irradiation (550 nm for trans to cis and 475 nm for cis to trans) in 4-hydroxyethylpiperazineethanesulfonic acid (HEPES) buffer-ethanol (4:1, v/v) at pH 7.0, however, the photoisomerization was slow. With the use of MADPADSA as a functional monomer, NaYF4:Yb3+,Er3+ as a substrate, 4-ethylphenol (4-EP) as a template, a novel photoresponsive surface molecularly imprinted polymer NaYF4:Yb3+,Er3+@MIP was obtained. The NaYF4:Yb3+,Er3+@MIP displayed rapid visible-light-induced photoswitching. The NaYF4:Yb3+,Er3+ substrate could efficiently increase the trans to cis isomerization rate of the photoresponsive MIP on its surface, which was faster than that of the corresponding azobenzene monomer MADPADSA. Possible reasons for this effect were investigated by fluorescence spectroscopy. NaYF4:Yb3+,Er3+@MIP displayed good specificity toward 4-EP with a specific binding constant (Kd) of 3.67 × 10-6 mol L-1 and an apparent maximum adsorption capacity (Qmax) of 10.73 µmol g-1, respectively. NaYF4:Yb3+,Er3+@MIP was applied to determine the concentration of 4-EP in red wine with good efficiency and a limit of detection lower than the value that could cause an unpleasant off-flavor.


Assuntos
Fenóis/análise , Processos Fotoquímicos , Raios Ultravioleta , Vinho/análise , Espectrometria de Fluorescência
15.
Cell Mol Life Sci ; 76(2): 381-395, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368549

RESUMO

Sister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit cohesin complex. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Imagem com Lapso de Tempo
16.
Mater Sci Eng C Mater Biol Appl ; 92: 365-373, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184762

RESUMO

A new photoresponsive surface molecularly imprinted polymer shell (PMIPS) was developed for determination of trace griseofulvin from milk. The PMIPS was prepared by surface imprinting technique using poly(styrene-co-methacrylic acid) (PS-co-PMMA) microspheres as the sacrificial substrate, griseofulvin as the template, a photoresponsive azobenzene derivative 4-((4-(methacryloyloxy)phenyl)diazenyl)-3,5-dimethyl benzenesulfonic acid as the functional monomer, and triethanolamine trimethacrylate as the cross-linker. The PMIPS was obtained after the removal of the sacrificial PS-co-PMMA core from the surface imprinted core-shell microspheres, PS-co-PMAA@PMIP. Compared with PS-co-PMAA@PMIP, PMIPS displayed better properties such as higher surface area and pore volume, rapid photo-isomerization rate, and higher adsorption capacities, specific binding constant and binding density. The PMIPS could efficiently detect griseofulvin in complex samples such as milk.


Assuntos
Griseofulvina/análise , Luz , Leite/química , Impressão Molecular , Polímeros/química , Adsorção , Animais , Isomerismo , Cinética , Nitrogênio/química , Polímeros/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
17.
Cell ; 174(3): 576-589.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033361

RESUMO

Genome-wide association studies (GWAS) have identified rs11672691 at 19q13 associated with aggressive prostate cancer (PCa). Here, we independently confirmed the finding in a cohort of 2,738 PCa patients and discovered the biological mechanism underlying this association. We found an association of the aggressive PCa-associated allele G of rs11672691 with elevated transcript levels of two biologically plausible candidate genes, PCAT19 and CEACAM21, implicated in PCa cell growth and tumor progression. Mechanistically, rs11672691 resides in an enhancer element and alters the binding site of HOXA2, a novel oncogenic transcription factor with prognostic potential in PCa. Remarkably, CRISPR/Cas9-mediated single-nucleotide editing showed the direct effect of rs11672691 on PCAT19 and CEACAM21 expression and PCa cellular aggressive phenotype. Clinical data demonstrated synergistic effects of rs11672691 genotype and PCAT19/CEACAM21 gene expression on PCa prognosis. These results provide a plausible mechanism for rs11672691 associated with aggressive PCa and thus lay the ground work for translating this finding to the clinic.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Adulto , Alelos , Linhagem Celular Tumoral , Cromossomos Humanos Par 19/genética , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Prognóstico
18.
Eur Urol ; 73(3): 322-339, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28927585

RESUMO

BACKGROUND: Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE: To systematically explore the genomic complexity and define disease-driven genetic alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS: The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The genomic alteration landscape in PCa was analyzed using an integrated computational pipeline. Relationships with PCa progression and survival were analyzed using nonparametric test, log-rank, and multivariable Cox regression analyses. RESULTS AND LIMITATIONS: We demonstrated an association of high frequency of CHD1 deletion with a low rate of TMPRSS2-ERG fusion and relatively high percentage of mutations in androgen receptor upstream activator genes in Chinese patients. We identified five putative clustered deleted tumor suppressor genes and provided experimental and clinical evidence that PCDH9, deleted/loss in approximately 23% of tumors, functions as a novel tumor suppressor gene with prognostic potential in PCa. Furthermore, axon guidance pathway genes were frequently deregulated, including gain/amplification of PLXNA1 gene in approximately 17% of tumors. Functional and clinical data analyses showed that increased expression of PLXNA1 promoted prostate tumor growth and independently predicted prostate tumor biochemical recurrence, metastasis, and poor survival in multi-institutional cohorts of patients with PCa. A limitation of this study is that other genetic alterations were not experimentally investigated. CONCLUSIONS: There are shared and salient genetic characteristics of PCa in Chinese and Caucasian men. Novel genetic alterations in PCDH9 and PLXNA1 were associated with disease progression. PATIENT SUMMARY: We reported the first large-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment.

19.
Cell Discov ; 3: 17032, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28884019

RESUMO

Microtubules are highly dynamic filaments assembled from αß-tubulin heterodimers and play important roles in many cellular processes, including cell division and migration. Microtubule dynamics is tightly regulated by microtubule-associated proteins (MAPs) that function by binding to microtubules or free tubulin dimers. Here, we report that FOR20 (FOP-related protein of 20 kDa), a conserved protein critical for ciliogenesis and cell cycle progression, is a previously uncharacterized MAP that facilitates microtubule depolymerization and promotes cell migration. FOR20 not only directly binds to microtubules but also regulates microtubule dynamics in vitro by decreasing the microtubule growth rate and increasing the depolymerization rate and catastrophe frequency. In the in vitro microtubule dynamics assays, FOR20 appears to preferentially interact with free tubulin dimers over microtubules. Depletion of FOR20 inhibits microtubule depolymerization and promotes microtubule regrowth after the nocodazole treatment in HeLa cells. In addition, FOR20 knockdown significantly inhibits both individual and collective migration of mammalian cells. Taken together, these data suggest that FOR20 functions as a MAP to promote microtubule depolymerization and cell migration.

20.
Sci Rep ; 7(1): 4538, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674394

RESUMO

The RTK/ERK signaling pathway has been implicated in prostate cancer progression. However, the genetic relevance of this pathway to aggressive prostate cancer at the SNP level remains undefined. Here we performed a SNP and gene-based association analysis of the RTK/ERK pathway with aggressive prostate cancer in a cohort comprising 956 aggressive and 347 non-aggressive cases. We identified several loci including rs3217869/CCND2 within the pathway shown to be significantly associated with aggressive prostate cancer. Our functional analysis revealed a statistically significant relationship between rs3217869 risk genotype and decreased CCND2 expression levels in a collection of 119 prostate cancer patient samples. Reduced expression of CCND2 promoted cell proliferation and its overexpression inhibited cell growth of prostate cancer. Strikingly, CCND2 downregulation was consistently observed in the advanced prostate cancer in 18 available clinical data sets with a total amount of 1,095 prostate samples. Furthermore, the lower expression levels of CCND2 markedly correlated with prostate tumor progression to high Gleason score and elevated PSA levels, and served as an independent predictor of biochemical relapse and overall survival in a large cohort of prostate cancer patients. Together, we have identified an association of genetic variants and genes in the RTK/ERK pathway with prostate cancer aggressiveness, and highlighted the potential importance of CCND2 in prostate cancer susceptibility and tumor progression to metastasis.


Assuntos
Ciclina D2/genética , Ciclina D2/metabolismo , Variação Genética , Sistema de Sinalização das MAP Quinases , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Prognóstico , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...